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1.0 Introduction 
Military commanders desire timely battlefield information to make decisions based on the effects 
of their plans and the current operational picture. Often times the existing plan requires 
modification “on the fly” due to information that emerges through sensor detection and 
intelligence inputs as circumstances evolve in the operational environment. This “emerging” 
information causes decisions to be altered, assets to be re-tasked, and/or new alternatives to be 
considered. As such, tools and techniques are needed to better support (1) analysis in the context 
of this information, (2) training of Commanders and their staff in utilizing this information, and 
(3) use of this information to enhance operations. This Final Report details efforts of RAM 
Laboratories in developing a DSAP (Dynamic Situation Assessment and Prediction) software 
infrastructure that supports each of these goals. 

1.1 Significance to the Air Force 
The concept of DSAP grew out of John R. Surdu’s Simulation in Operations research project and 
prototype system (OpSim) by which he introduces the concept of operationally-focused 
simulation. Through this concept, he defends his notion that simulation used in real-time 
operational environments can be effective in supporting decision-makers. By embedding 
simulation within an operational setting, decision-makers can use simulation to plan operations, 
monitor current operations, determine deviations from a plan, predict outcomes, and project 
different outcomes. 

DSAP is achieved by implementing two distinct functions: (1) Dynamic Situation Assessment, 
and (2) Prediction. Dynamic Situation Assessment is realized when methods and technologies 
are implemented to fuse simulation with emerging, real-world data in order to provide a current 
operational picture of the battlespace. For example, real-world data can be pulled from real-time 
Command Control Computers Communications Intelligence (C4I) databases and used to 
calibrate the estimated state of simulations reflecting the current state of operations. Prediction 
techniques can be employed by simulating alternate plans forward in time from the current state, 
providing predictive analysis of real-time battlefield effects to decision aids operating in real-
time. Thus, the prediction capability improves the real-time planning process by providing a 
faster-than-real-time predictive assessment of Courses Of Action (COAs), alternate COAs, and 
operational effects on-the-fly to support "what if" scenarios. 

While this DSAP capability does not exist, it can be realized by augmenting existing decision 
aids with faster-than-real-time simulation and advanced information technology concepts. To 
enable these capabilities, the software frameworks supporting these decision aid technologies 
must evolve. Specifically, enhancements are required for both new and legacy software 
frameworks to support functionality that allows objects to be dynamically created, deleted and 
reconfigured; allows simulations to be calibrated with live data feeds, and allows simulations to 
reduce overheads while supporting these mechanisms in order to continue to run in real-time. 
Section 1.1.1 discusses existing software infrastructure technologies and advanced information 
management functionality that can support DSAP.  

1.1.1 Infrastructure Enhancements and Functionality Required for DSAP 
This subsection details some of the infrastructure enhancements and functionality for software 
frameworks and infrastructure that can support DSAP functionality. A summary of some of this 
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functionality is presented in Table 2 and a discussion of each type of functionality is provided in 
subsequent sections. 

Table 2: Relating DSAP Capabilities to Software Infrastructure Technologies. 

SOFTWARE INFRASTRUCTURE 
TECHNOLOGY CAPABILITY 

Persistence Provide the capability to save the simulation state at various points in a simulation 
execution. 

Checkpoint/Restart Provide the capability to Restart the Simulation from a Saved State. 

Dynamic Object Creation/Deletion Enter or remove new assets into a simulation and recalculate during run-time. 

Live data feed Integration and Recalibration Enter or remove new sensor or parametric information during run-time. Reconfigure 
scenario or vignette. 

Rollback Framework Rewind a simulation to a key point in time where new assets are discovered or re-tasked. 

Rollforward/Lazy Cancellation Fast-forward a simulation if new assets or re-tasking do not affect other assets. 

Event Reparation Repair events that are not affected by newly discovered or removed assets. 

Multiple Replications Utilizes distributed processing power to execute simulation replications faster. 

1.1.1.1 Persistence and Checkpoint/Restart 
Persistence and Checkpoint/Restart capabilities are important for enabling DSAP. The 
persistence capability allows a simulation to be “rolled back” to a specific checkpoint. At that 
checkpoint, assets playing in the simulation can be re-tasked to evaluate a new course of action. 
Persistence provides a simulation with the capability to save its state (as a checkpoint), and 
restart the simulation from any saved checkpoint. Persistence keeps track of memory allocations 
and pointer references in an internal database by allowing an object, and all of the objects that it 
references, to be packed into a buffer. During a restart, the buffer can be used to reconstruct the 
object. Even though the newly reconstructed objects may be instantiated in different memory 
locations, the persistence framework updates all affected pointer references to the new memory 
locations. 

1.1.1.2 Dynamic Object Creation/Deletion 
One of the key technologies that must be supported to enable DSAP is a dynamic object 
creation/deletion capability. The dynamic object creation/deletion capability allows simulation 
objects to be created or deleted dynamically during run-time. DSAP is supported by enabling 
assets to be dynamically created or deleted via user or machine interaction, thus allowing 
simulations to introduce new targets of opportunity and re-task assets “on-the-fly.” 

1.1.1.3 Rollback/Rollforward/Lazy Cancellation 
DSAP requires a rollback framework that supports the rolling back of events to a given point in 
time. By rolling back time, simulations can reprocess information from a point where new 
direction can be taken. A DSAP capability also requires lazy cancellation and roll forward 
functionality. A touch/depend system can be used to implement lazy cancellation by 
automatically determining the state variables of a simulation that each event modifies and is 
dependent upon. Events will then rollforward when rollback-causing stragglers do not affect the 
outcome of processed events. This means that when the simulation state is rolled back (for the 
purpose of object creation/deletion or re-tasking), the rolled back state is saved and then rolled 
forward if those events are not effected by the new objects or re-tasking. 
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1.1.1.4 Event Reparation 
DSAP implementations require techniques that support event reparation. When rolling a 
simulation back to address re-tasking issues or modify assets, events will be rolled back to a 
specific point in the simulation. Some of these rollbacks will be due to straggler events. Some 
events that are rolled back due to stragglers can be repaired. Implementing this technique for 
those events would reduce the number of cascading rollbacks by fixing the events instead of 
reprocessing them from scratch. This process will greatly improve the performance of many of 
the built-in events that are currently used for distributing data. By employing this strategy, 
performance improvements can allow simulations to execute at faster-than-real-time in order to 
provide real-time predictive inputs to decision aids.  

1.1.1.5 Multiple Replications 
DSAP may require methods for supporting the use of multiple replicated trials in cases where 
Monte Carlo or deterministic simulation is used. Monte Carlo simulations use pseudo random 
number generators to execute a simulated scenario many times. Statistical analysis is then 
performed on the collective outcomes to determine results. It is easy to achieve parallelism when 
executing Monte Carlo simulations by farming the replications to available processors. 

1.1.1.6 Calibration with Live Data Feeds 
DSAP requires a software infrastructure that can be integrated with and calibrated by live data 
feeds. The subsequent system maintains the capability to be updated by real-time data and 
automatically re-simulate scenarios based on emerging situational assessments. 

1.1.1.7 Summary of Required Infrastructure Capabilities 
To realize this DSAP capability, this effort is developing an underlying software infrastructure 
that supports C4I planning systems. This enhanced software framework realizes the predictive 
functionality by supporting simulation capabilities that allow objects to be dynamically created, 
deleted and reconfigured, while allowing simulations to be calibrated with live data feeds and 
estimating the state of real-time operations. 

The subsequent sections of this Technical Report discuss the implementation of the DSAP 
software infrastructure using existing simulation and advanced information technology concepts.  

• Section 2.0 discusses the Concept of Operations for DSAP and outlines the overarching 
architecture and design tradeoffs.  

• Section 3.0 discusses the design and implementation of a Multiple Replication Framework 
(MRF) that is at the heart of the DSAP software infrastructure. 

•  Section 4.0 discusses the effectiveness measurements used to rank plans and alternatives   

• Section 5.0 discusses the operation of the MRF.  

• Section 6.0 discusses future enhancements to the DSAP infrastructure that will target its 
deployment on the Global Information Grid (GIG).  

• Section 7.0 covers DSAP usage and outlines future work. 

• Section 8.0 provides the Bibliography for this Final Report. 

• Section 9.0 defines the acronyms used in developing this report. 
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2.0 DSAP Concept of Operations and Architecture 
The Conceptual Operation of the DSAP Infrastructure supports real-time data calibration, real-
time state estimation through simulation, and predictive simulation through faster-than-real-time 
simulation. The concepts of operation for the DSAP Infrastructure are shown in Figure 1 with 
respect to the Dynamic Situation Assessment capability and Figure 2 with respect to the 
Prediction capability. In Figure 1, the xp(t) axis simulates the current plan in real-time. This real-
time simulation is used to simulate the results and internal state of the operational picture. As this 
real-time simulation evolves, it is constantly being updated with Blue and Red Force information 
from C4I data feeds and databases. These real-time updates, denoted by the z(t) axis, are 
provided to the real-time simulation of the current plan to calibrate the behavior of the simulated 
COA. This calibrated real-time simulation is used to estimate the state of the real-time 
operational picture, xe(t). This allows us to store the internal state, xe(t) of the mission in a 
manner that provides our Dynamic Situation Assessment capability. 

Figure 2 illustrates the predictive capability of DSAP. The individual plans, y(t), can be idealized 
and executed out in time. This basically represents the behavior of the plan when the plan 
executes as expected. These same plans and their alternatives are then simulated faster-than-real-
time, as denoted by the x(t) axis. By executing these plans faster-than-real-time, we provide a 
predictive look into how a plan and its execution may unfold. Multiple plans and multiple 
replications of each plan may be executed to provide a statistically significant outlook of a plan’s 
anticipated outcomes based on the current operational information. This provides the Prediction 
capability. 
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Figure 1: Calibrated Real-time Simulation for Estimation 
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Figure 2: Predictive Simulations Faster-Than-Real-Time 

2.1 DSAP Architecture 
There are three key components to the DSAP Software Infrastructure: the Multi Replication 
Framework (MRF), the Optimization Framework, and an Integrated version of Joint 
SemiAutomated Forces (JSAF) to provide simulation components to the DSAP Infrastructure. 
The MRF is used to provide a framework for support of multiple replications of any simulation 
across parallel and distributed platforms. The Optimization Framework is responsible for 
providing a framework for support of optimization problems across parallel and distributed 
platforms and the Integrated JSAF allows for performing predictions using the JSAF simulations. 
The overall architecture is shown in Figure 3. The element in red is the optimization framework, 
the elements in green are the integrated JSAF, and the elements in black comprise the MRF. The 
majority of the work performed on this effort covered the MRF and Integrated JSAF. 
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Figure 3: DSAP Software Infrastructure 
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2.1.1 Multi Replication Framework Operation 
The operation of the MRF is detailed in Figure 4. Replications are run on available processing 
resources across a distributed gird. The results of those replication runs are saved to disk and 
evaluated. The evaluation is performed to identify the most promising replication modeling an 
alternate COA. In addition, each replication is evaluated against the real-time picture provided 
by the Theater Battle Management Core Systems (TBMCS). TBMCS inputs are used to calibrate 
JSAF running in real-time. This calibration process is used both to calibrate the real-time JSAF 
simulation to assist in estimating the state of real-world operations, as well as to calibrate 
predictive simulations and recommend candidates for pruning. 
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Figure 4: Operation of the MRF 

The MRF is built on three key pieces of software infrastructure: Network Communications, a 
Client Server ORB Infrastructure, and an Extensible Grid Capability. Network Communications 
supports messaging between platforms supporting the MRF. The Client Server ORB 
Infrastructure provides the interfaces to simplify the communications between platforms and the 
Extensible Grid Capability provides the ability to manage the farming of applications in a 
distributed compute grid. Each of these are described in greater detail in the following 
subsections. 

2.1.1.1 Network Communications 
The Network Communications provides highly optimized services to allow single and multiple 
processor computers to communicate across local and wide area networks. The Network 
Communications layer minimizes message copying and memory allocation overheads by using 
free lists to store incoming message parameters of fixed length. The Network Communications 
also support heterogeneous networks that mix big and little endian data formats. The Network 
Communications was the most basic building block of advanced information technology used on 
this effort and served as the basis for both the Client Server ORB and Extensible Grid 
implementations. 
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2.1.1.2 Client Server ORB (Object Request Broker) Infrastructure 
The Client Server ORB provides simplified interfaces for supporting the communication 
between platforms. These interfaces have the requirement of providing a distributed object 
interface to support network programming. These interfaces are language and platform 
independent. This effort examined three possible solutions for providing this Client Server ORB 
Infrastructure: ACE + TAO, the Synchronous Parallel Environment for Emulation and Discrete 
Event Simulation (SPEEDES) / Common Component Simulation Engine (CCSE) ORB 
Infrastructure, and RAM ORB, an open source ORB infrastructure developed by RAM 
Laboratories, Inc. in support of another Department of Defense (DoD) effort. A comparison of 
these solutions is discussed below. 

2.1.1.2.1 ACE + TAO 
ACE + TAO is middleware that supports portability and software reuse. ACE + TAO is 
comprised of ACE (Adaptive Communication Environment) and The ACE ORB (TAO). ACE is 
an open source framework that provides components and patterns for developing high-
performance concurrent communication software for distributed real-time and embedded 
systems. ACE simplifies development of OO (Object-Oriented) network applications and 
services that utilize interprocess communication, event demultiplexing, explicit dynamic linking, 
and concurrency. ACE also automates system configuration and reconfiguration and masks 
operating system differences. 

TAO provides an open-source implementation of a Common Object Request Broker 
Architecture (CORBA) Object Request Broker (ORB). It allows clients to invoke operations on 
distributed objects without concern for object location, programming language, OS platform, 
communication protocols and interconnects, and hardware. TAO is built using components and 
patterns in the ACE framework.  

TAO captures key design patterns and optimization principle patterns necessary to develop 
standards-compliant Quality of Service (QoS)-enabled ORBs. It combines real-time Input/Output 
(I/O) subsystem architecture and optimization strategies with ORBs to provide vertically 
integrated ORB end systems supporting end-to-end throughput, latency, jitter, and dependability 
QoS requirements 

2.1.1.2.2 SPEEDES/CCSE Client Server Functionality 
SPEEDES/CCSE provides interfaces for a standard communication infrastructure that is used to 
connect networked simulations together. A general-purpose client/server infrastructure 
coordinates message passing between machines in a local area network and between multiple 
local area networks in a wide area network. The client/server infrastructure supports dynamic 
connectivity to allow new applications to join the system and fault tolerance when applications 
exit the system. The client/server infrastructure is distributable, redundant, facilitates multiple 
service types, and coordinates multiple user groups. It also supports heterogeneous networks that 
mix large and small endian data formats.  

A generic client/server model is used to support multiple services types within a server process. 
Multiple servers may be used to connect local networks to other local networks. In this manner, a 
spider-web like network of servers tries to minimize message congestion while optimally routing 
messages. Each server type is represented as a class in the server process. Message headers for 
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services requested by the client to the server process include information describing the type of 
service requested, the specific service requested, and the group Id of the requester. 

2.1.1.2.3 RAM Object Request Broker  
The RAM ORB allows clients to first connect to their server process and then freely send 
messages to the server. Clients use the RAM ORB layer, then poll to receive incoming messages. 
Servers differ from clients in that they only process incoming messages. Servers go to sleep 
when there are no incoming messages to process. 

Fault tolerance and dynamic connectivity capabilities allow for new applications to seamlessly 
join and exit the networked system. The client/server infrastructure supports multiple server 
types and object Ids. 

Multiple servers may be used to connect local networks to other local networks. In this manner, a 
spider-web like network of servers tries to minimize message congestion while optimally routing 
messages. Each server type is represented as a class in the server process. Message headers for 
services requested by the client to the server process include information describing the type of 
service requested, the specific service requested, and the group Id of the requester. 

2.1.1.2.4 Selection of ORB Technology 
As a result of our trade study, the RAM ORB was selected for this effort because of its support 
for two-way interfaces and its support for both networked and shared memory communications, 
thus allowing for the potential use of multi-processor clients when conducting faster-than-real-
time simulation. 

2.1.1.3 Extensible Grid Capability 
The Extensible Grid works in a server-client implementation consisting of three components that 
enable maximum performance and highest reliability on a distributed network.  The Extensible 
Grid is built on Object Request Broker (ORB) technology. The components of the Extensible 
Grid include the Server, Tasker, and Worker, providing the infrastructure necessary to deliver an 
advanced grid system implementation.  Figure 5 shows an Extensible Grid implementation 
utilizing with the individual components. 
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Figure 5: Extensible Grid Implementation 

The Server is the backbone of the system and requires no additional implementation on the 
developer end.  The Server is an executable that handles receiving, queuing, and intelligent task 
distribution. The Server receives individual tasks from the Tasker and distributes those tasks to 
the receiving Workers.  

The Tasker is the main interface for tasking the system. The Tasker’s tasks include: 1) 
instantiating the Tasker and connecting to the Server, 2) sending tasks to the server, 3) waiting 
for all or some tasks to be completed, and 4) getting the results for each task back from the 
Server. The Tasker connects to the Server in a ready state, sends tasks and receives results. 

As the tasks are being received, the information on a task can be accessed.  The task list can be 
traversed or a specific task can be directly viewed.  The Server also informs the Tasker whether a 
particular task has been addressed by Workers residing on the grid.   

The Worker is the component that executes the application on a specific grid node. Just like the 
Tasker, the Worker connects to the server when it is instantiated.  The main focus of the worker 
is to analyze data received, execute the application, and send back a response. 

2.1.2 Optimization Framework 
The Optimization Framework feature provides the capability to support optimization of cost 
functions across parallel and distributed platforms based on the feedback from predictive 
simulation replications. The Optimization Framework is comprised of a Rollback Framework, a 
Persistence Framework, Communications, Event Processing, Branch Management Capabilities, a 
Branch Modeling Framework and a Cost Function Evaluator. Requirements for the Optimization 
Framework were developed on this effort, however, the design and implementation steps will be 
addressed further down on the DSAP development roadmap. 

2.1.3 Integrating with JSAF 
In order to use JSAF as both a predictive tool and as a state estimator, the MRF was integrated 
with Joint Semi-Automated Forces. A key constraint that was brought about in this area involved 
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JSAF’s use as a predictive tool. To provide a prediction capability, JSAF had to execute faster-
than-real-time in order to provide predictive responses to DSAP users operating in real-time. To 
address this faster-than-real-time constraint, several key functional areas of JSAF must execute 
in a timely manner. An effort was performed to benchmark the JSAF scenarios to ensure that it 
could be used as a predictive tool. The benchmarking used an Air Tasking Order from the 
Korean scenario (korea-ato.xls) that was simulated for over 26 hours of simulation time using 
JSAF. JSAF was run on a 1.7 GHz Intel i686 processor running RedHat Linux Version 9.0. The 
platform had a 500 MB hard drive and a 256 KB cache. Several key parameters were 
benchmarked to ensure that JSAF simulations could be executed within a 15-minute time 
window. The 15-minute window exists because that is the rate at which TBMCS will be used to 
calibrate JSAF scenarios running in real-time. The key measurements that were identified 
through benchmarking included: 

• The simulation initialization time needed to be identified. 

• The scaling factor for the simulation had to be determined with respect to time. 

• The accuracy of the scaled simulation with respect to the real-time scaling factor had to 
be determined. 

• The amount of time required for performing checkpoints and restarts had to be 
determined. 

Benchmarks concerning each of these metrics is discussed in the subsections below. 

2.1.3.1 Initialization Time 
The initialization time was measured for JSAF simulations for both real-time and scaled real-
time simulations. The benchmarking was performed with the GUI turned off. Initialization time 
was measured with respect to the wall clock. The average initialization time was 2 minutes and 
51 seconds for the Korean scenario. Figure 6 depicts the initialization time for the Korean 
scenario with respect to the real-time scaling factor. 
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Figure 6: JSAF Initialization Time for Korean Scenario 
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2.1.3.2 Scaling Factor 
The ATO for the Korean scenario was run on JSAF in both real-time, as a scaling factor of real-
time, and as fast as possible. Our benchmarks found that the scaling was not linear and that the 
scenario execution topped out at 350X real-time. The benchmarks of the wall clock simulation 
time versus the scaling factor are shown in Figure 7. This meant that the fastest simulation 
execution from start to finish was about 4 and a half minutes. 
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Figure 7: Effect of SimRate on JSAF Execution Time 

It should be noted, however, that the simulated JSAF execution at this simulation rate was found 
to lack accuracy due to events being queued and delayed at the initialization of JSAF executions. 
This fact rendered excessively large simulation rates useless. 

Subsequent simulation runs using DSAP for predictive analysis of JSAF plans have shown that 
for a modified and substantially smaller version (around 20 entities) of the Korean scenario that 
RAM Laboratories constructed, a scaling factor of around 14x was the maximum that could be 
used. The reasons for this are the following: because JSAF is a real-time simulation, the real-
time simulation clock immediately starts upon execution or launch of JSAF. When large scaling 
factors are used, JSAF starts its scaled clock while instantiating the scenario under evaluation. 
This often pushes events to the right on the timeline while JSAF is constructing entities in the 
simulation. For large simulations, this scaling factor starts approaching 1x. 

2.1.3.3 Checkpoints and Restarts 
The Korean scenario was used to benchmark JSAF checkpoints and restarts. No correlation was 
found between using scaling factors for the simulation rate and the time it took to perform 
checkpoints or restarts. The average checkpoint time on the platform was 23 seconds. The 
average restart time was 2 minutes 31 seconds. No restart took longer than 3 minutes 15 seconds 
to perform.  

When DSAP is installed across a distributed grid in a laboratory setting, there were several issues 
with JSAF surrounding the Checkpoint and Restart process. The major problem found with the 



 

 12

Checkpoint and Restart process is that JSAF often was found to “ghost” checkpointed entities 
across a restarted simulation. This meant that JSAF often detected other running JSAF 
executions on the network and instantiated those entities as well as its own. In addition, there 
were issues with constructing Red Force target data when running more than one JSAF 
execution. 

2.1.3.4 JSAF Integration 
This subsection covers the effort required for integrating JSAF with the MRF for use as both a 
predictive tool and a state estimator. Specifically, the MRF needs to load scenarios, save 
scenarios, execute scenarios and adjust the simulation rate. All of these must be executed from a 
command line to trigger JSAF execution.  

2.1.3.4.1 Loading and Saving JSAF Scenarios 
The following code snippets detail the process for loading and saving JSAF scenarios. The 
loading and saving of JSAF scenarios allows for checkpointing and restarting JSAF simulations. 
The restart process will serve as the starting point for branching replications. 

Code Segment 1: Loading and Saving JSAF Scenarios: Loading and Saving JSAF Scenarios 

libpo.h 

// Save all objects into a file 

extern int32 po_begin_save(PO_DATABASE *db,    

                           char        *fname); 

// Load a file containing persistent objects. 'prevent_foreign_origin' is a 
boolean flag 

// that indicates wether or not libpo should fail if the saved scenario's 
creator (ie.  

// hostname of the GUI that saved the scenario) doesn't match the hostname of 
the GUI that  

// is trying to load it. 
 

extern int32 po_begin_load(PO_DATABASE *db,  

                           char        *fname, 

                           int32        prevent_foreign_origin = 0); 

// Completly clear out a database 
 

extern void po_new_scenario(PO_DATABASE *db); 

libpo_local.h 

 

// po_write.c: 
 

extern int32 po_save_to_file(PO_DATABASE *db,    

                             char        *fname); 
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2.1.3.4.2 Setting SimRate and Processing Up to a Given Time 
The following code snippets detail the process for setting the SimRate to run as fast as possible 
and to process up to a specified time. These capabilities can be used to run JSAF faster than real 
time and will allow JSAF to be used in a predictive capacity. 

Code Segment 2: Setting the SimRate and Processing Up To A Given Time 
 

libsched.h 

 

// Sets whether to keep time_realtime_clock slaved to real time, or whether 
to skip ahead to  

// the next time there's something to do. 
 

extern void sched_set_fast_as_possible(int32 run_fast_as_possible); 

 

// Runs the scheduler until the specified deadline.  The time used is that 
from  

// time_realtime_clock.  A deadline of 0xFFFFFFFF will run indefinitely.  To 
just run  

// pending functions, pass time_last_realtime_clock + 1. 
 

extern void sched_invoke_functions_until(uint32 deadline); 

2.1.3.4.3 Adjusting SimRate, Pausing Simulation, and Extracting Simulation Time 
The following code snippet details the process for adjusting the SimRate, pausing the simulation 
and obtaining the simulation time. These features are necessary to calibrate the running JSAF 
simulation and to extract run-time diagnostics. 

Code Segment 3: Adjusting the SimRate, Pausing the Simulation, Extracting the Simulation Time 

libtime.h 

 

// Sets the relationship between the simulation clock and real time. 
 

extern void time_set_simulation_rate(float64  rate); 

 

// Gets the simulation rate. 
 

extern float64 time_get_simulation_rate(void); 

 

// Stops advance of simulation time.  If multiple pause handles are 
outstanding, the  

// simulation will be paused if ANY of them request a pause. 
 

extern void time_pause(TIME_PAUSE_HANDLE handle); 
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// Starts advance of simulation time.  If multiple pause handles are 
outstanding, the 

// simulation will not resume until ALL of them are unpaused. 
 

extern void time_unpause(TIME_PAUSE_HANDLE handle); 

 

// Returns the current simulation time. 
 

extern uint32 time_simulation_time(void); 

 

// Returns the realtime at the last simulation frame 
 

extern uint32 time_realtime_last_sim_frame(void); 

 

// Returns the time of the real time clock in milliseconds. 
 

extern uint32 time_realtime_clock(void); 

 

// Returns the time at the last check of the realtime clock. 

extern uint32 time_get_last_realtime(void); 

2.1.3.4.4 Loading Spreadsheets and Saving Parameters 
The following code snippet demonstrates the process for loading spreadsheets into JSAF and 
saving parameters. This process is used to save a checkpointed simulation for use in determining 
the cost or goodness of that simulation.  

Code Segment 4: Loading and Saving Spreadsheets 

libspreadsheet.h 

 

extern void sprdsht_load_spreadsheet(char        *filename,    

                                     PO_DATABASE *po_db); 

 

extern void sprdsht_read_sprdsht(FILE        *readfile, 

                                 char        *fname, 

                                 PO_DATABASE *db); 

 

extern void sprdsht_write_pts_to_file(FILE        *write_file, 

                                      char        *fname,  

                                      PO_DATABASE *db, 
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                                      PO_DB_ENTRY *ovl_entry, 

                                      uint8        save_type); 

 

extern void sprdsht_write_units_to_file(FILE        *write_file, 

                                        char        *fname,  

                                        PO_DATABASE *db, 

                                        uint8        save_type); 

 

extern void sprdsht_write_lat_long(FILE    *file_ptr,  

                                   float64 gcsloc[XYZC]); 

 

// Converts and calls the above 
 

extern void sprdsht_write_lat_long(FILE            *file_ptr,  

                                   PointLocation3D *pt); 

 

// Converts and calls the above 
 

extern void sprdsht_write_lat_long_3e(FILE    *file_ptr,  

                                      float64  xval, 

                                      float64  yval, 

                                      float64  zval, 

                                      int32    cell); 

 

// Write points in MGRS coordinates 
 

extern void sprdsht_write_mgrs_coords(FILE    *file_ptr, 

                                      float64  gcsloc[XYZC]); 

 

// Converts and calls the above 
 

extern void sprdsht_write_mgrs_coords(FILE            *file_ptr,  

                                      PointLocation3D *pt); 

 

extern void sprdsht_write_mgrs_coords_3e(FILE    *file_ptr,  

                                         float64  xval, 

                                         float64  yval, 

                                         float64  zval, 

                                         int32    cell); 
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// Write points in GCC coordinates 
 

extern void sprdsht_write_gcc_coords(FILE    *file_ptr,  

                                     float64  gcsloc[XYZC]); 

 

// Converts and calls the above 
 

extern void sprdsht_write_gcc_coords(FILE            *file_ptr,  

                                     PointLocation3D *pt); 
 

2.1.3.4.5 Example 
The follow code snippets demonstrate how the original JSAF code (Code Segment 5) can be 
modified to support the loading and executing of multiple replications. 

 
Code Segment 5: Original JSAF Code 

 

main.c // JSAF original example 

 

int main(int argc, argv_t argv) { 

 

  int status = main_init(argc, argv); 

 

  if (status) 

    return status; 

 

  // Fire up the scheduler 
 

  sched_invoke_functions_until(0xFFFFFFFF);  

 

  // Not reached 
 

  return(0); 

 

} 
 

 

 

 

Code Segment 6: Modifications For Integration with MRF 
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main.c // RamLabs mod 

 

int main(int argc, argv_t argv) { 

 

  int status = main_init(argc, argv); 

 

  if (status) 

    return status; 

 

  // run 10 batches 
  

  int counter; 

  for (counter=0; counter<10; counter++) { 

    cout << "Counter = " << counter << endl; 

 

    // have correct scenario path 
 

    char *name = "/users/jsaf/JSAF5/scenarios/scenarioName.1/scenarioName"; 

    cout << "Loading scenario: " << name << endl; 

 

    // load scenario 
 

    po_begin_load(static_po_db, name);                                          

    cout << "Done loading scenario: " << name << endl; 

 

    int time; 

    for (time=0; time<10000; time+=1000) { 

      cout << "Process up to " << time << endl; 

 

      // Fire up the scheduler 
 

      sched_invoke_functions_until(time); 

    } 

 

    po_new_scenario(static_po_db); 

  } 

 

  cout << "Done - exiting..." << endl;  
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  // Not reached 
 

  return(0); 

 

} 
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3.0 Implementing the DSAP MRF  
An overview of the current capabilities of the DSAP prototype is shown via the MRF in Figure 
8. The MRF serves to farm-out and run multiple replications of plans and alternative COAs via 
faster-than-real-time simulation. When real-time updates are available, state information from 
the real-time state estimation simulation are calibrated with real-time C4I inputs, saved and 
compared with the state information from the predictive plans. Plan replications that diverge 
from the real-time picture beyond a prediefined threshold are automatically pruned and replaced. 
Our MRF prototype manages this entire process by utilizing TBMCS for our real-time C4I inputs 
and JSAF as both the real-time and faster-than-real-time simulation components. JSAF was 
selected as our simulation component because of its ability to simulate a Joint Urban Operations 
(JUO) environment (as well as theater operations) as well as its enhanced support for intelligent 
ground clutter models. It should also be noted that other simulations can be used as the 
simulation component depending on the desired application. 

MR_RTP_Evaluator
(Worker)

MR_Workers

FTRT JSAF 
Execution

MR_RT_Worker
RT JSAF 
Execution

MR_Plan_Evaluator
(Worker)

MR_Manager
(Server)

MR_Tasker

(TBMCS)

MR_RT_Tasker

MR_Gui

MR_RT_C_Worker

Calibrated 
JSAF 

Execution
MR_Plan_Evaluator

(Worker)
MR_RTP_Evaluator

(Worker)
MR_RTP_Evaluator

(Worker)

MR_Workers

FTRT JSAF 
Execution

MR_RT_Worker
RT JSAF 
Execution

MR_Plan_Evaluator
(Worker)

MR_Plan_Evaluator
(Worker)

MR_Manager
(Server)

MR_Manager
(Server)

MR_Tasker

(TBMCS)

MR_RT_Tasker

MR_Gui

MR_RT_C_Worker

Calibrated 
JSAF 

Execution
MR_Plan_Evaluator

(Worker)
MR_Plan_Evaluator

(Worker)
 

Figure 8: The MRF 

Currently, the MRF has the capability to simultaneously simulate multiple plans and replications 
of a plan faster-than-real-time across a network of computers. The MRF has the ability to 
compare the simulation state of a faster-than-real-time replication with the plan objectives and 
real-time picture. Replications that diverge from the real-time picture beyond a predefined 
threshold are automatically pruned and replaced; Commanders have the capability to manually 
prune ineffective plans and task alternative plans. The MRF runs a real-time state estimation 
simulation that can pull data from live sources; this data is used to continuously update the real-
time simulation. The components required to provide this functionality are described in the 
following subsections. 

3.1 MRF Components 
The MRF contains three basic types of components: taskers, workers, and a manager. Taskers 
function to task the manager with applications for workers to run, and specify how these 
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applications should be initialized. Workers execute the tasks assigned by the manager, including 
executing the simulation replications, saving the results of the replications, and evaluating and 
comparing the results of the replications to the plan objectives and real-time picture. The 
manager divides the replications into smaller time segments and assigns these tasks to the 
workers, handles the bookkeeping, and tackles flow control issues. Figure 8 illustrates each of 
these components and their connectivity with the manager. The role of each of the specific MRF 
components is discussed in the following subsections. 

3.1.1 Tasker 
The Tasker component interfaces with Command and Control to send a predictive simulation 
task to the server. The Tasker provides connectivity to the server and allows the user to specify 
initialization parameters such as the simulation execution name, initial scenario file, start and end 
time, simulation scaling rate, and replication number. 

3.1.2 Real-Time Tasker 
The Real-Time Tasker component issues a task to the server to initiate the real-time worker. The 
Real-Time Tasker provides connectivity to the server and allows the user to specify the 
simulation execution name, initial scenario file, name of the plan the task corresponds to, and the 
time interval between saving the state of the simulation. 

The Real-Time Tasker component, MR_TBMCS_Tasker, provides the capability to allow the 
user to retrieve the Real-Time Picture (RTP) from TBMCS or another C4I data source via 
command line or GUI. The sequence diagram defining the operation of the MR_TBMCS_Tasker 
is shown in Figure 9. 
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Figure 9: Sequence Diagram for MR_TBMCS_Tasker and TBMCS: 

The MR_TBMCS_Tasker is a Tasker component that automates the process of retrieving real-
time C4I information from TBMCS. For TBMCS connectivity, both ODBC and JDBC were 
tried. Some problems existed with ODBC and have not been resolved. The Tasker/JDBC 
approach to TBMCS connectivity has been implemented and tested. 
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3.1.3 Manager 
The server, or manager, component is the core of the MRF. The server is responsible for 1) 
managing the execution of long replications by splicing them in time, 2) constructing the 
necessary parameters needed for a worker to launch and save a JSAF execution, 3) constructing 
the necessary parameters for launching an evaluation on an evaluator component, 4) displaying 
diagnostics related to the execution of multiple replications, 5) identifying when replications are 
completed, 6) pruning and re-tasking replications that are off course from the real-time picture, 
and 7) restarting unfinished replications in the event of a worker crash or disconnect. 

The Server design builds off of the Server used to implement the Extensible Grid. The Server 
capability for this effort inherits from the WpNetGridServer, which is the Server for the 
Extensible Grid, which in turn inherits from WpServer, which is the basic server capability in the 

WarpIV Framework. The UML Class Diagram for the Server design is shown in Figure 10. 
Figure 10: UML Diagram for Server Component 

The Server is responsible for implementing the following functionality: 

• Managing executions of long replications by splicing them in time. 

• Constructing the necessary parameters needed for launching an execution on a Worker. 

• Displaying diagnostics related to the execution of multiple replications. 

• Supporting multiple groups for the same exercise on the same server. 

• Providing a measure of fault tolerance for running multiple replications. 

• Restarting unfinished replications if a Worker crashes or is unable to complete its task. 

The Server component, MR_Manager, is responsible for managing the execution and evaluation 
of the replications. The Activity Diagram for the MR_Manager with respect to the ProcessRtp() 
function is shown in Figure 11. This Activity Diagram defines the process for managing the 
replications through their RTP evaluation. 
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Figure 11: Activity Diagram for MR_Manager's ProcessRtp() 

3.1.4 MR_Console and Graphical User Interface (GUI) 
The MR_Console component provides the user with diagnostics with respect to operation of the 
MRF. The MR_Console also allows the user to monitor the status of the MRF. The Sequence 
Diagram for the MR_Console is shown in Figure 12. In addition to simply monitoring status and 
setting the time interval for faster-than-real-time simulations, the MR_Console has been 
modified to host our Graphical User Interface. The MR_Console now queries the server to return 
the status of replications, provides functionality to modify time intervals and end times, provides 
functionality to modify pruning thresholds, and provides the capability to allow the user to prune 
replications or plans using the GUI. 
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Figure 12: MR_Console and GUI Control Flow 

The GUI provides a graphical user interface component for MRF users. The GUI provides a 
wrapper to interface with the tasker and server components that enable the user to kick off tasks, 
modify the simulation end time, modify the pruning threshold, prune replications, prune plans, 
and visualize the relative effectiveness of each plan.  

3.1.5 Worker 
The Worker component, MR_Worker, receives simulation tasking from the server and launches 
predictive JSAF executions that run faster-than-real-time. The Worker is responsible for 
launching JSAF replications faster-than-real-time for a predetermined length of time. The 
Worker receives a command from the MR_Manager to launch a JSAF execution. This command 
is accompanied by parameter sets (specifying the SimRate, start time, end time and other 
variables), environment variables and scenario spreadsheets. The Worker also gathers the results 
from the replication execution in spreadsheet format and sends the information back to the 
MR_Manager.  

Upon completion of the replication, the Worker saves the state of the simulation to disk and 
sends it to the server for later evaluation and comparison with real-time data and the plan 
objectives. Replications that stray from the real-time picture beyond a predefined threshold are 
automatically pruned, re-tasked by the server, and initialized to match the current state. 
Replications that fail to meet the plan objectives can be manually pruned by Command Staff, and 
if pruned, they are automatically re-tasked by the server and initialized to match the current state. 

The Sequence Diagram specifying the operation of the Worker executing FTRT JSAF scenarios 
is shown in Figure 13 with respect to the rest of the MRF. 
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Figure 13: MR_Worker Control Flow for Executing Faster-Than-Real-Time Simulations 

3.1.6 Real-Time Worker 
The Real-Time Worker component, MR_RT_Worker, receives a simulation task from the server 
to launch a JSAF execution in real-time. The MR_RT_Worker is used to run real-time JSAF 
executions (or executions of other simulations) in order to support the state estimation capability 
in the MRF. The MR_RT_Worker is responsible for running the real-time simulation, updating 
the simulation with TBMCS information (in the case of the calibrated real-time simulation), and 
saving checkpoints of the simulation to intermediate results files for effectiveness evaluations. 
The sequence diagram of the MR_RT_Worker is shown in Figure 14. For the MR_RT_Worker, 
the worker connects to the server and requests tasking. The Tasking, when provided to the server 
from the MR_RT_Tasker  (the old MR_TBMCS_Tasker) then assigns tasks to the Server, which 
are passed to the MR_RT_Worker. The MR_RT_Worker executes JSAF tasks and sends results 
back to the Server every 15 minutes. In addition, the MR_RT_Tasker continually updates the 
real-time simulation every 15 minutes.  
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Figure 14: Control Flow for MR_RT_Worker 

3.1.7 Plan Evaluator 
The Plan Evaluator component, MR_PlanEvaluator, is responsible for comparing the state of the 
saved faster-than-real-time replications with the plan objectives. The MR_PlanEvaluator is a 
Worker that evaluates the results of the JSAF replication executions against other results. The 
MR_PlanEvaluator takes each of the result spreadsheets and evaluates them to determine the 
“best” plan. The evaluation is performed by executing the function PlanEvaulator(). The control 
flow for the MR_PlanEvaluator is shown in Figure 15, when considering the sequence of 
operations between the MR_PlanEvaluator, MR_Server, and MR_Worker. The 
MR_PlanEvaluator requests tasks from the server. When results spreadsheets are available at the 
MR_Server, those results are tasked to the MR_PlanEvaluator, which evaluates the effectiveness 
of each plan. The effectiveness results are then sent back to the Server, and the MR_Evaluator is 
also tasked to begin evaluatoing those results against the current real-time picture. 
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Figure 15: Control Flow for MR_PlanEvaluator 

3.1.8 Real-Time Picture Evaluator 
The Real-Time Picture (RTP) Evaluator component, MR_RTP_Evaluator, is responsible for 
comparing the state of the saved faster-than-real-time and real-time simulations with the real-
time picture. It is important that replications projecting into the future match reality at the time of 
the real-time update. Replications that noticeably diverge from the real-time picture are 
automatically pruned, re-tasked by the server, and initialized to match the current state. The RTP 
evaluator launches an evaluation program that performs the actual analysis by applying a 
weighting function that ultimately generates a relative effectiveness value. The server compares 
this value with a predefined threshold to determine whether the simulation is pruned. 
The MR_RTP_Evaluator is a Worker that evaluates the results of the JSAF replication 
executions against the updated real-time picture. The MR_RTP_Evaluator takes each of the 
result spreadsheets and evaluates them against the new real-time information. If the evaluation 
process deems that certain replications are no longer valid when compared to the RTP, then those 
replications are pruned and new replications will be initiated in their place.  

A sequence diagram for the operation of the MR_RTP_Evaluator with respect to other elements 
of the MRF is shown in Figure 16 and its corresponding state diagram is shown in Figure 17. In 
these diagrams, the MR_RTP_Evaluator receives both the RTP and Results from the 
MR_Server. In addition, the control flow provides functionality for looping through RTP 
evaluation results, and pruning replications that exceed some (user-specified) predefined 
threshold. This control flow also assumes that the MR_RTP_Evaluator has connected to the 
server.   
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Figure 16: Control Flow for RTP Evaluator 
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Figure 17: State Diagram for the RTP Evaluator 

3.2 Overall Control Flow for Predictive Operations 
Each of the preceding subsections has detailed the operation of the MRF for running predictive 
analysis of plans while calibrating and evaluating the results with real-time-picture information 
extracted from TBMCS. Sequence diagrams in these subsections have presented a localized view 
of the flow of control between different components of the MRF system. A key element in 
ranking plans and alternatives is the calculation of effectiveness metrics. The theory behind these 
calculations is presented in Section 4.0. A comprehensive view of this control flow for predictive 
operations is shown in Figure 18.  
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Figure 18: Control Flow for Predictive Operations 
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4.0 Effectiveness Calculations 
This section describes the two unique measures of effectiveness, Raw Effectiveness and Relative 
Effectiveness, used to rank plans and identify candidates for pruning.  

4.1 Raw Effectiveness Defined 
Raw effectiveness is a value between zero and one indicating the overall effectiveness of the 
plan. A value of one indicates complete success (i.e., all Red entities/assets destroyed and no 
Blue entities/assets destroyed). A value of zero indicates complete failure (i.e., all Blue 
entities/assets destroyed and no Red entities/assets destroyed). The raw effectiveness is not an 
indication of how accurately the plan has been followed; rather it is a measure of the overall 
outcome. 

4.1.1 Calculating Raw Effectiveness 
The intrinsic value for each entity (or asset) in the battle can be defined at a given point in time. 
Normally, the intrinsic value does not change for each entity. However, it is possible for new 
entities to enter the battle, or for new information to be provided indicating changes to the 
intrinsic value of an entity. 

I i
B (t) = Intrinsic value for blue entityi at time t  

I i
R (t) = Intrinsic value for red entityi at time t  

The actual value for each entity (or asset) in the battle can be defined at a given point in time. 
The actual value ranges from zero (meaning that the entity/asset has been destroyed) to the 
intrinsic value (meaning that the entity/asset has perfect health, has not diminished its capacity to 
engage in battle, and has a full fuel supply). 

Ai
B (t) = Actual value for blue entityi at time t  

Ai
R (t) = Actual value for red entityi at time t  

The total intrinsic values for Blue and Red entities/assets in the battle can be specified at a given 
point in time: 

I B (t) = I i
B

i

NB

∑ (t)  

I R (t) = I i
R

i

N R

∑ (t)  

The total actual values for Blue and Red entities/assets in the battle can be specified at a given 
point in time: 

AB (t) = Ai
B

i

NB

∑ (t)  

AR (t) = Ai
R

i

N R

∑ (t)  

Utilizing these equations, the Raw Effectiveness can be calculated by the following equation: 
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RawEffectiveness(t) =
AB (t) + I R (t) − AR (t)[ ]

I B (t) + I R (t)
 

A successful plan normally results in the raw effectiveness value increasing over time. However, 
it is possible for a plan to accomplish its mission, even though the raw effectiveness decreases. 
This would happen if the cost of completing a mission turns out to be higher than the overall 
gain. 

Because of the uncertain nature of predicting the outcome of plans, it is important to execute 
multiple replications and statistically analyze the results. The mean and standard deviation are 
provided for each time step in the simulation. These mean values and their standard deviations 
can be fitted using χ 2 analysis to obtain time-based curves that can provide trend analysis. 

Thus, the raw effectiveness can be thought of as the overall measure of effectiveness of the plan. 
This is different from the relative effectiveness, which is a measure of the plan performance (i.e., 
how accurately the plan was followed). 

4.2 Relative Effectiveness Defined 
The relative effectiveness is a measure of the plan performance, indicating how accurately the 
plan was followed. Two types of relative effectiveness are computed: (1) simulated projections 
in time vs. plan expectations from the ATO, and (2) simulated projections at the current time 
with respect to the real-time picture. 

In the first case, the relative effectiveness provides a prediction of the uncertainty of the plan 
performance over time. It predicts when the plan might fall apart, and when new planning may 
be required. It provides insight on the chaos that may ensue during the fog of war. Multiple 
replications per plan are required to determine the anticipated outcome. Some replications may 
deviate from the plan due to statistical variances or uncertainties in the planned scenario, while 
other replications produce the anticipated outcome. A statistical analysis of the relative 
effectiveness is used to help characterize the plan dispersion. 

In the second case, the relative effectiveness allows simulation replications that began their 
execution in the past to verify that they match the current real-time picture. The relative 
effectiveness for this second case is used to prune those replications that do not match the real 
world picture. New simulation replications are restarted to replace those replications that were 
pruned using the real-time picture entity states to initialize the simulation. 

4.2.1 Calculating Relative Effectiveness 
The state of each entity/asset in the plan at any point in time can be defined as an abstract vector 
of values. These state values can be projected forward in time either from simulation or from the 
actual planned expectations directly from the Air Tasking Order (ATO). State values can also be 
provided through the real-time picture with live data feeds that are provided into the system. 
These three kinds of state vectors are defined below. 

The simulation projects the state vectors for each entity/asset in the scenario. 

  

r 
X i

B (t) = Simulated state vector of blue entityi at time t  

  

r 
X i

R (t) = Simulated state vector of red entityi at time t  
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The expected state vectors for each entity/asset in the plan is projected from the ATO to predict 
the outcome of the plan. 

  

r 
Y i

B (t) = Projected state vector of blue entityi at time t  

  

r 
Y i

R (t) = Projected state vector of red entityi at time t  

The real-time picture state vector is defined as follows. 

  

r 
Z i

B (t) = Observed state vector of blue entityi at current time t  

  

r 
Z i

R (t) = Observed state vector of red entityi at current time t  

These vectors can be used to calculate the two cases for calculating the Relative Effectiveness 
for simulated projections and through the use of the real-time picture. The calculation of Relative 
Effectiveness for these two cases is shown below: 

Case 1 – Simulated projections: 
 
RelativeEffectiveness(t) = 1−

1
I B + I R

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

r 
X i (t) −

r 
Y i (t)

i

N
∑  

 

Case 2 – Real-time picture: 
  
RelativeEffectiveness(t) = 1−

1
I B + I R

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

r 
X i (t) −

r 
Z i (t)

i

N
∑  

Note that for each of these cases, the magnitude of the vector difference is weighted for each 
vector value. The overall magnitude for each term in the sum is normalized and lies between 
zero and I i (t) . 

A score of one would indicate that the plan is being executed as expected. A score of zero would 
indicate complete chaos, meaning that the plan has fallen apart and is no longer valid. For Case 
2, this would indicate that the plan does not agree with reality and should be pruned/restarted. 
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5.0 Operating the MRF  
The MRF GUI is shown in Figure 19. The GUI provides a graphical interactive interface to the 
MRF that allows Commanders to task the execution of simulation plans and replications, view 
the progress and performance of the plans, and prune ineffective plans. The graph at the bottom 
of the GUI plots the raw and relative effectiveness of each plan over time. These metrics are used 
to gauge the effectiveness and performance of the Commander’s plan. 
 

 
Figure 19: The MRF GUI 

Plans and replications are initiated in the MRF by issuing a tasking script from the GUI. As 
shown in Figure 20, a file selector tool allows the Commander to select a tasking script to kick 
off the process. The GUI will be expanded to allow the Commander to start plans and 
replications via menus instead of scripts. 

After the script has been selected, the MRF takes control by sending the task to available 
workers, as shown in Figure 21. 
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Figure 20: Selecting and Issuing a Tasking Script 

 
 

 
Figure 21: GUI kicking off a JSAF Replication 

 
After the simulation time segment is complete, the MRF automatically performs the plan 
evaluation and real-time picture evaluation, if the real-time data update was received. Figure 22 
shows the plan evaluation results of a replication. 

Because of the uncertain nature of predicting the outcome of plans, it is important to execute 
multiple replications of a plan and statistically analyze the results. The MRF calculates the mean 
and standard deviation of the effectiveness values for each time step in the simulation. These 
mean values and their standard deviations can be fitted using χ2 analysis to obtain time-based 
curves that provide trend analysis. The χ2 analysis is used to compare both the simulated and 
observed results with the expected results of the plan. 
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Figure 22: Plan Evaluation Results 
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6.0 Roadmap for Operating DSAP on the Global 
Information Grid 

One of the overarching goals of this effort is to extend the DSAP Infrastructure to support 
Network Centric Operations and Warfare (NCOW). To address this goal, the DSAP 
Infrastructure will be enhanced to work with Network Centric Enterprise Services (NCES) in a 
Service Oriented Architecture (SOA) in order to support applications utilizing the Global 
Information Grid (GIG). A starting point for ensuring that DSAP supports the GIG will be to 
ensure that elements of the infrastructure provide a publish/subscribe capability. This 
publish/subscribe capability enables processing nodes to (1) publish data or information, (2) 
subscribe to published data or information, and (3) support query on demand operations for 
posted data. The operation of the DSAP infrastructure in this context is described as follows and 
is depicted in Figure 23. 
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Figure 23: Enhancing DSAP For Use On A Service-Oriented 

The underlying communications infrastructure of the DSAP framework is currently being 
augmented with publish/subscribe functionality. While providing these underlying mechanisms 
for net-centric operations are needed, much work must be performed to define the data and 
services that the DSAP Infrastructure will provide to the GIG community. 

For example, in their paper on M&S in the GIG environment presented at the IITSEC 
Conference in 2004, Numrich, Hieb, and Tolk present a view for supporting NCOW in a GIG 
environment. Among the elements discussed is a value chain based around the concepts of Data 
Quality, Information Quality, Knowledge Quality, and Awareness Quality. The DSAP 
Infrastructure can be viewed as a tool for supporting NCOW because it provides measures to 
support Data Quality (through connections with databases), Information Quality (through 
connections with real-time feeds), Knowledge Quality (through modeling and simulation using 
predicted simulation, and Awareness Quality (through the use of its real-time simulation element 
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as a state estimator). While the DSAP Infrastructure matches up as a support tool for the GIG, 
support for a web services paradigm is needed. This support is discussed below. 

6.1 Web Services 
Web services are discrete web-based applications that interact dynamically with other web 
services. According to Numrich, Hieb, and Tolk four basic definitions are provided and must be 
met to ensure that a technology or tool can play in a web-service environment. These definitions 
include: 

• Structuring and describing the information to be exchanged 

• Specifying the web service 

• Accessing and communicating with the web service 

• Registering and locating web services 

These are described in more detail below. 

6.1.1 Structuring and Describing the Information  
The first step in defining the necessary data structure and services to make DSAP “GIG-ready” 
involves structuring and describing the information that will be passed between elements of the 
DSAP system. This includes defining the structure and type of data necessary to initialize 
scenarios, describe plans, identify plan objectives and plan priorities, encapsulate plan and 
replication results, provide plan evaluation information, and extract real-time information 
between the different services provided by the DSAP Infrastructure. A major emphasis in this 
area is utilizing a format that can (1) be understood by Commanders and their staff at Air 
Operations Centers, and (2) interact with tools utilized by Commanders and their staff at Air 
Operations Centers. The primary mechanism that will be used for describing information in 
DSAP is the Extensible Markup Language (XML). XML provides the description of data to be 
exchanged as well its storage and transmission formats. A key facet of XML is that it allows for 
the definition of schemas that can be used to define supported data types, content, and structure.  

With this in mind, several languages and data models are being examined for use in supporting 
DSAP in a GIG environment. These include: Military Scenario Description Language (MSDL), 
Battle Management Language (BML), and the Command and Control Information Exchange 
Data Model (C2IEDM). Each of these models/languages is described below, while outlining 
their potential use in the DSAP Infrastructure. 

6.1.1.1 Military Scenario Description Language (MSDL) 
Military Scenario Description Language (MSDL) is a language used to initialize and load 
scenarios in a simulation environment through the use of an XML based data interchange format. 
This format enables Command and Control (C2) planning applications to interchange the 
military portions of scenarios with simulations and other applications. MSDL targets the 
initialization of simulations and C2 systems with initial state and planned actions. 

When implementation in the DSAP Infrastructure is considered, MSDL can be used to define the 
initial simulation scenarios and initial plans and alternatives that the simulation elements will 
execute. MSDL can be used to define these scenarios from real-time C4I intelligence data, or to 
pull representative scenarios from a scenario databases. Use of MSDL will enable DSAP users to 
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utilize any MSDL-based scenario, or provide scenario information in a standard format to other 
users on the GIG. 

6.1.1.2 Battle Management Language (BML) 
The Battle Management Language is a vocabulary or lexicon used by simulation users and 
developers to specify how to plan and automate military functions in support of Battle 
Management activities. BML provides a data format for describing military behavior that is 
derived from military doctrine. The resulting description is a standard that can be passed from 
human to machine, or machine to machine. BML can be used to (1) describe Command and 
Control forces and equipment conducting military operations, and (2) provide for situational 
awareness and a shared common operational picture. 

Currently, the DSAP Infrastructure sends plan information, along with objectives and priorities 
throughout the infrastructure using messages formatted as comma-delimited spreadsheets. These 
messages are very difficult to decipher and do not adhere to any standard lexicon, making their 
use by Commanders and their staff at Air Operations Centers very difficult. This effort can 
utilize BML in support of the DSAP Infrastructure to address these deficiencies by specifying the 
plans (COAs) and alternatives that will be executed by both the predictive simulation component 
and the simulation-based state estimator. BML can also be used to specify plan objectives and 
priorities. These descriptions are derived from military doctrine and will have much greater use 
when supporting activities at Air Operations Centers. 

6.1.1.3 Command and Control Information Exchange Data Model (C2IEDM) 
The Command and Control Information Exchange Data Model (C2IEDM) is an information 
exchange and data management model developed by NATO to specify the structure of 
information passed between Command and Control Information Systems (C2IS).  The C2IEDM 
preserves the meaning and relationships of information to be exchanged between C2IS at the 
Conceptual, Logical, and Physical levels. 

The DSAP Infrastructure can use the C2IEDM in conjunction with MSDL or BML to specify the 
underlying relationships that define its entities and actions for its simulation scenarios. The 
C2IEDM can be used for data interchange at both initialization and in extracting and posting 
intermediate and final results.  

6.1.2 Specifying the Web Services 
The second element defined for DSAP will involve specifying and describing the types of web 
services present in DSAP. The types of web services can be derived directly from elements of 
the DSAP framework and represent functions such as Worker/Real-time Simulation, 
Worker/Predictive Simulation, Worker/Evaluator, Worker/Real-time Picture Evaluator, 
Tasker/Console, Tasker/TBMCS or Real-time Picture. Each service will be described as the type 
of operation it will perform and the type of data it will handle and return. 

6.1.3 Accessing and Communicating with the Web Service 
The third element to be defined for the DSAP Infrastructure will be defining the means to access 
and communicate with its resulting web services. SOAP (Simple Object Access Protocol) is the 
standard used by the community to define simple one-way mappings for requesting and sending 
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information. A goal of this effort will be to extrapolate on the current sequence diagrams to 
define the access and communication sequence required by “web-service” DSAP. 

6.1.4 Registration of Web Services 
The final element for providing a “web-service” DSAP will be posting and registering the 
services provided by each service and describing the message size and structure required to 
satisfy that web service. For each of the services described in 6.1.2, descriptions of the services 
must be posted and registered. 

6.2 Advantages To Using DSAP In A SOA 
The preceding subsection has provided a high level overview for enhancing DSAP to play in a 
SOA. There are many advantages to providing this capability including (1) better support for 
real-time picture information, (2) access to additional COAs and plans, (3) better proliferation of 
results to all corners of the GIG, (4) integration with other simulation elements, and (5) improved 
support for training or live exercises. Each of these is discussed briefly below. 

6.2.1 Support for Real-time Picture Calibration 
Currently the DSAP Infrastructure calibrates with the real-time picture by connecting to TBMCS 
(which can be provided through GCCS). The connection is made through JDBC at the 
MR_TBMCS_Tasker. Currently, real-time picture updates are provided through three methods 
(1) polling TBMCS databases to see when updates are made, (2) pulling information from the 
TBMCS databases at some pre-determined “update interval”, and (3) subscribing to TBMCS 
updates. As services currently provided via TBMCS evolve and are subsequently provided as 
web services in a SOA architecture, TBMCS will solely rely on the DSAP publish/subscribe 
mechanism to retrieve timely updates that it has subscribed to. This capability can be used to 
select and filter on specific fields from operations and intelligence databases. The prototype 
allows information to be pulled from the AODB to provide additional Air Tasking Orders 
(ATOs), and from the MIDB in order to obtain updated Red Force target information. A goal of 
this effort, however, will be to extend the real-time update capability of the DSAP framework to 
handle real-time data feeds by defining and handling the message structure provided by these 
services. This capability will allow us to utilize more universal information and take advantage 
of information present across the GIG. 

RT JSAFRT JSAFRT JSAF

TBMCSTBMCSTBMCS Live DataLive DataLive Data JTIDSJTIDSJTIDS SATCOMSATCOMSATCOM TADWTADWTADW

RT JSAFRT JSAFRT JSAF

TBMCSTBMCSTBMCS Live DataLive DataLive Data JTIDSJTIDSJTIDS SATCOMSATCOMSATCOM TADWTADWTADW

 
Figure 24: Using Live Data Feeds To Enhance State Estimation 

An example of this can be illustrated in Figure 24. The DSAP prototype pulls information from 
the AODB and MIDB. The information provided from these databases, however, only serves to 
calibrate the real-time state estimation simulation in terms of Red Force targets and Blue Force 
ATOs. A key component in evaluating the operational picture includes Blue Force position and 
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targeting information, which may dynamically change as missions unfold to address Time 
Critical Targets, Time Sensitive Targets, and other Targets of Opportunity. To understand the 
effects of dynamic re-targeting and re-tasking of assets and resources on the battlefield, the 
DSAP prototype must calibrate itself with available data feeds such as JTIDS, SATCOM links, 
Link-16, etc. A future goal of this effort will be to extend the DSAP’s capability to take 
advantage of both these and similar resources available across the GIG.   

6.2.2 Support for Storing and Assessing Alternate COAs 
A second key area where DSAP must consider the “artifacts” of playing in a GIG environment 
involves support for storing and assessing alternate COAs. Currently the DSAP Infrastructure 
provides a mechanism at its MR_Manager for storing alternate COAs. As the analysis and re-
planning process evolves, ineffective COAs may be replaced by plans stored in the 
MR_Manager’s database. To extend DSAP functionality to a SOA, enhancements will be made 
to both define and support a message structure that will allow COA databases at both local and 
remote locations to retrieve and contribute the latest plans. This feature will support 
heterogeneous platforms and better enable system scalability. 

6.2.3 Proliferation of Results 
DSAP framework must also consider information it may wish to “push” or publish for users of 
the GIG that may utilize those results for planning and analysis purposes. Currently, results 
regarding the effectiveness measurements of each plan evaluated by the DSAP infrastructure are 
stored in a database residing at the MR_Manager and set back to the user/analysis at both the 
MR_Tasker terminal and console. In order to provide this information to other users, we can 
define the message structure that will support a service that provides the results of the simulation 
and evaluation executions through the DSAP infrastructure. This type of intermediate knowledge 
may have uses beyond the current evaluation process. 

6.2.4 Integration With Other Simulations for Analysis 
The prototype detailed in this paper uses JSAF for analyzing its COAs. The DSAP infrastructure, 
however, is not limited to JSAF for analysis. The MRF provides a very non-intrusive mechanism 
that allows its workers to “fire-off” a JSAF replication. This mechanism can be applied to other 
simulations such as the Force Structure Simulation (FSS) or the Joint Wargaming System 
(JWARS) in order to provide COA assessment. A goal to a “web-service” DSAP capability may 
be to make all simulations web services that can be interchangeably used to populate the DSAP 
process. Steps in providing this capability would involve defining the structure for scenario 
initialization data as well as results data. 
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7.0 DSAP Usage and Future Work 
As stated earlier, the DSAP Infrastructure can be used to support analysis, training, and 
operations. In terms of Analysis, the DSAP environment can be used for Course of Action 
Analysis and rapid mission rehearsal. The MRF’s Prediction capability can be used to analyze 
COAs and potential alternatives by simulating those plans faster-than-real-time. Raw 
effectiveness calculations can then be used to evaluate and rank each plan or replications of each 
plan to determine its effectiveness at achieving its goals and objectives within its operating 
context. 

The DSAP Infrastructure can be used to support Training of Commanders and their staff through 
human-in-the-loop simulation. In this context, the Commander can be trained using the real-time 
simulation in the absence of the calibrated results. This training process utilizes the predictive 
analysis of plans (using faster-than-real-time simulation) to provide the Commander and his staff 
with feedback on the potential effectiveness of a plan and possible alternatives. The MRF can 
allow the Commander to select a new plan, analyze a new alternative, or prune failed alternatives 
based on feedback provided to him. This training process can be extended to live environments 
by incorporating the real-time C4I aspects of the framework. 

The DSAP Infrastructure can be used to support Operations in a number of ways. First, the 
DSAP Infrastructure can be used to support the planning process. The Prediction capability can 
be used to rapidly rehearse plans faster-than-real-time via simulation and provide measures of 
plan effectiveness as input to plan generation tools. In this context, the DSAP Framework can 
take the plan generation process from simply an optimization process that “covers” plan 
objectives to a process that incorporates mission rehearsal for a more accurate optimization 
process.  

Second, the full DSAP capability is geared toward use at Air Operations Centers in an 
operational environment. In this instance, the DSAP Infrastructure can take mission plans and 
potential alternatives generated from Air Tasking Orders (ATOs) and use the Prediction 
capability to (1) predict their effectiveness in the future while calibrating with the current real-
time picture, and (2) support Dynamic Situation Assessment via state estimation. In this context, 
the DSAP Infrastructure can be used to evaluate and replace plans as the operational picture 
evolves. 

7.1 Future Work 
To continue to build on successes of our DSAP work, RAM Laboratories is proposing to 
continue to build on MRF functionality and to integrate and install a working prototype of the 
DSAP Infrastructure in the laboratory at AFRL’s Rome Research Site. Specifically we propose 
develop, implement, and integrate the real-time operationally focused simulation component of 
DSAP in an operational setting to provide estimation of real-world state. In addition, we propose 
to augment our existing predictive analysis capabilities and Graphical User Interfaces to facilitate 
DSAP’s use in predicting the outcomes of plans and alternatives through “what-if” analysis. 
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9.0 Acronyms 
ACE   Adaptive Communication Environment 

AODB   Air Operations Data Base 

AFRL   Air Force Research Laboratory 

ATO   Air Tasking Order 

BML   Battle Management Language 

C2IEDM   Command and Control Information Exchange Data Model 

C2IS   Command and Control Information Systems 

C4I Command, Control, Communications, Computers, and                                  
Intelligence 

CCSE   Common Component Simulation Engine 

COA   Course Of Action 

CORBA   Common Object Request Broker Architecture 

DSAP   Dynamic Situation Assessment and Predictive 

FSS   Force Structure Simulation 

FTRT   Faster Than Real Time 

GCCS   Global Command and Control System 

GIG   Global Information Grid 

GUI   Graphical User Interface 

IFSB   Information Systems Branch 

IITSEC  Interservice Industry Training Simulation Education 
Conference 

JDBC   Java Data Base Connectivity 

JDK   Java Developer’s Kit 

JSAF   Joint Semi-Automated Forces 

JTIDS   Joint Tactical Information Delivery System 

JWARS   Joint WarGaming System 

MIDB   Modernized Integrated Data Base 

MRF   Multiple Replication Framework 

MSDL   Military Scenario Description Language 

NATO   North Atlantic Treaty Organization 

NCES   Network Center Enterprise Services 

NCOW   Network Centric Operations and Warfare 
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ODBC   Open Data Base Connectivity 

ORB   Object Request Broker 

OS    Operating System 

POC   Point of Contact 

RT    Real Time 

RTP   Real Time Picture 

SATCOM   Satellite Communications 

SBIR   Small Business Innovative Research 

SOA  Service Oriented Architecture 

SOAP  Simple Object Access Protocol 

SPEEDES  Synchronous Parallel Environment for Emulation and Discrete   
Event Simulation 

TAO   The ACE ORB 

TBMCS   Theater Battle Management Core System 

XML   Extensible Markup Language 

 




